
Lecture 8
BIOB11 - Experimental design and analysis for biologists
Department of Biology, Lund University
2025-04-04
Correlation coefficient (Pearson):
\[ r = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2}} \]
\[ r = \frac{\text{Covariance}(x,y)}{\text{Standard deviation}(x) \times \text{Standard deviation}(y)} \]
\[ r = \frac{\text{Cov}(x,y)}{\sigma_x \sigma_y} \]
\[ r = \frac{\text{Cov}(x,y)}{\sigma_x \sigma_y} \]

Correlation coefficient (\(r\)): \[ r = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2}} \]
Coefficient of determination (\(r^2\)): \[ r^2 = \left(\frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2}}\right)^2 \]
# A tibble: 1 × 1
p_value
<dbl>
1 0
reps\[ y = \text{Slope}\times x + \text{Intercept} \]
\[ y = mx+c \]
\[ y = \beta_1x+\beta_0 \]
\[ y = \beta_0+\beta_1x+\beta_2x_2+\beta_3x_3+\beta_4x_4+\beta_5x_5 \]
\[ y = \beta_1x+\beta_0 \]
\[ y = 3.83x-0.68 \]


Base R:
With infer:
boot_dist <-
mating_data |>
specify(reproductive_success ~ mating_success) |>
generate(reps = 1000, type = "bootstrap") |>
fit()
boot_dist# A tibble: 2,000 × 3
# Groups: replicate [1,000]
replicate term estimate
<int> <chr> <dbl>
1 1 intercept -3.75
2 1 mating_success 4.32
3 2 intercept -4.96
4 2 mating_success 4.73
5 3 intercept -0.267
6 3 mating_success 3.80
7 4 intercept 6.72
8 4 mating_success 2.84
9 5 intercept -1.08
10 5 mating_success 3.96
# ℹ 1,990 more rows
null_dist <-
mating_data |>
specify(reproductive_success ~ mating_success) |>
hypothesize(null = "independence") |>
generate(reps = 1000, type = "permute") |>
fit()
null_dist# A tibble: 2,000 × 3
# Groups: replicate [1,000]
replicate term estimate
<int> <chr> <dbl>
1 1 intercept 20.3
2 1 mating_success 0.0382
3 2 intercept 23.9
4 2 mating_success -0.603
5 3 intercept 25.8
6 3 mating_success -0.951
7 4 intercept 23.7
8 4 mating_success -0.570
9 5 intercept 27.2
10 5 mating_success -1.20
# ℹ 1,990 more rows
\[ y = \beta_1x+\beta_0 \]
\[ y = \beta_0+\beta_1x+\beta_2x_2+\beta_3x_3+\beta_4x_4+\beta_5x_5 \]