

The influence of habitat on the patterns of sexual signals in a freshwater fish radiation

(Etheostoma spp.)

Iain R. Moodie, Tamra C. Mendelson, Julien P. Renoult

The influence of habitat on the patterns of sexual signals in a freshwater fish radiation

(Etheostoma spp.)

Iain R. Moodie, Tamra C. Mendelson, Julien P. Renoult

Sensory Drive

Sensory systems

Sensory Drive

Sensory

Sexual signals

reference

Renoult and Mendelson 2019

Processing bias: extending sensory drive to include efficacy and efficiency in information processing

Julien P. Renoult¹ and Tamra C. Mendelson²

Renoult and Mendelson (2019)

Etheostoma (Family: Percidae)

Darters

Natural selection Sexual selection

Pattern

Natural selection corr(habitat, pattern) =

Sexual selection

Pattern

Sexual selection

Pattern

Sexual selection

corr(habitat, pattern) =

corr(habitat, pattern) =

Sexual selection

Pattern

Sexual selection

corr(habitat, pattern) =

Methods

Species coverage

Species = 153/166

Both = 114

Male only = 37

Female only = 2

Quantifying differences in pattern

Quantifying differences in pattern

The Unreasonable Effectiveness of Deep Features as a Perceptual Metric

Zhang et al. (2018)

Perceptual distance: d_{luminance}

Perceptual distance: d_{luminance}

High similarity

Species N

Lawrence M. Page & Brooks M. Burr

"strongly flowing water in riffles and chutes of medium sized to large upland rivers where substrate consists of coarse gravel, rubble, or boulders"

"strongly flowing water in riffles and chutes of medium sized to large upland rivers where substrate consists of coarse gravel, rubble, or boulders"

"strongly flowing water in riffles and chutes of medium sized to large upland rivers where substrate consists of coarse gravel, rubble, or boulders"

Fast flowing

Gravel

Cobble

Bedrock

Sand

Slow flowing

Vegetated

Mud

Boulder

corr(habitat, pattern) =

(with phylogenetic permutations)

1000 permutations

(Harmon and Glor 2010)

(with phylogenetic permutations)

 \times 100 topologies

(with phylogenetic permutations)

$$r = 0.300, p < 0.001$$

(Harmon and Glor 2010)

×100 topologies

(with phylogenetic permutations)

$$r = 0.300, p < 0.001$$

1000 permutations

(Harmon and Glor 2010)

×100 topologies

(with phylogenetic permutations)

1000 permutations

(Harmon and Glor 2010)

 $\times 100$ topologies

(with phylogenetic permutations)

$$r = 0.029, p = 0.213$$

$$r = -0.040, p = 0.602$$

1000 permutations

(Harmon and Glor 2010)

×100 topologies

Full results

0.0 r 0.3

Full results

corr(habitat, pattern) =

We expected:

corr(habitat, pattern) =
 O → O Sexual selection

Sexual selection

corr(habitat, pattern) =
O O O O O O O

corr(habitat, pattern) =
 · ♂ → ♀ ← → Sexual selection

With thanks to:

More info:

Tamra Mendelson

Patrick Ciccotto

Yannis Begue

- EEVC research group
- Habitat experts
- Darter photographers
- MEME defence jury

@irmoodie

irmoodie.com

References