The Tempo & Mode of Toxicant Sensitivity Evolution

lain R. Moodie^{1,2}, Stephen P. De Lisle²

¹Department of Biology, Lund University, ²Department of Environmental and Life Sciences, Karlstad University

macroevolution, ecotoxicology, phylogenetic comparative methods

We use data from standardised ecotoxicological dose-response experiments to model how species' sensitivity to a wide range of toxicants have evolved in a phylogenetic comparative framework. Here we show results from a subset of this dataset, focusing on acute toxicity in fish species.

Here's what we did:

Figure 1: Species sensitivities for various toxicants (${
m LD}_{50}$) were extracted from EPA ECOTOX knowledgebase, and modelled as quantitative traits using time-calibrated phylogenies from TimeTree5.

Phylogenetic diversity Figure 2: Within the fish subset we have 300+ species across 28 orders with sufficient data.

Figure 5: Phylogenetic correlations between toxicants are highly variable, but often positive.

Figure 6: Brownian motion rate of evolution (σ^2) across toxicants is of a similar magnitude to published estimates of other log scale traits.

Rate of evolution

Future directions & challenges

- Further explore multi-rate/peak models.
- Implications for ecotoxicological modelling assumptions?
- What stands out to you? What questions do you have? Help us to summarise this dataset!