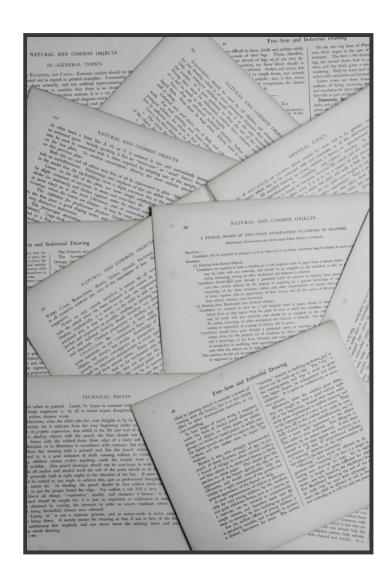

Open, Reliable and Transparent Data

Iain R. Moodie Stockholm Mini-symposium

2024-02-28

A brief annecdote

Sexual selection in plants



Pollen tubes interacting with pistil tissues - Jeanne Tonnabel

- Bateman gradients in angiosperms
 - \blacksquare N = 2 (in 2021)
- Project goal
 - Conduct a meta-analysis
- Find datasets that could be re-analysed in this new context
- Combine into a meta-analysis to test predictions

Sexual selection in plants

- Initial search
 - N=2167 😊
- After sorting
 - N=30 🥯
- After trying to source data
 - N=9 <u>•</u>

Datasets we couldn't use

- Data not archived
 - No way to contact author
 - No response to contact
 - Data had been lost
 - Not willing to share data

- Data archived
 - Inaccessible
 - Incomplete
 - Incomprehensible

Lost from science

Exxon Valdez oil spill 1989

- 40.8 million litres of crude oil spilled
- Settlement funds from Exxon used for research and monitoring the impacts of the spill
- Between 1989 and 2010, 419 projects were funded
- In 2012, NCEAS tried to compile all historic datasets
- 70% were unrecoverable

Lost from science

Transparency in research

Opaque research

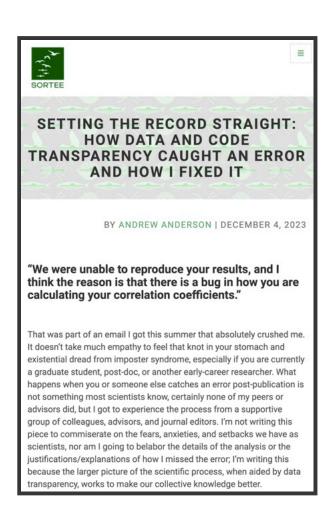
- Publication bias
 - Not all research is published
- Incomplete or insufficiently detailed methods
- Selective reporting in results
 - Confirmation bias
 - "HARKing"
 - "P-hacking"
- Unaccessible underlying data

Photo by Clem Onojeghuo

Opaque research limits science

- Harder to replicate or re-use methods
- Harder to build upon to progress the field
- Harder to interpret results
- Harder to trust the conclusions

Photo by Karl Hedin


Open, Reliable and Transparent Science

Open, Reliable and Transparent Data

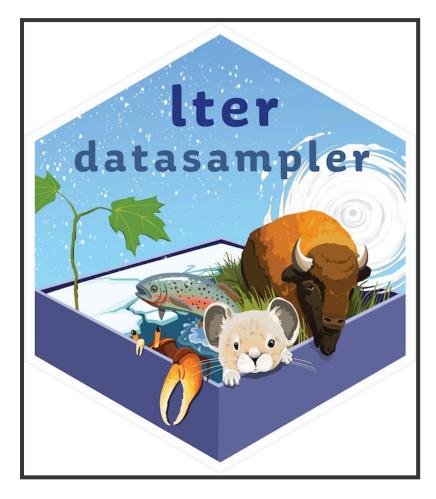
And why you should care about it.

Reproducible and reliable results

- Promotes accountability and trust
- Mistakes can be corrected¹
- Analytical decisions can be justified
- Scientific misconduct can't hide

New questions & new methods

- Built upon more effectively
 - Deeper understanding of data & analysis
 - Used to develop new tools/methods/protocols
 - E.g. Bumpus 1899
- Viewed in a new light
 - Beyond the original paper
 - Paradigm shifts
- Analysed using the latest methods
- Meta analysis


More accurate meta-analysis

- Easy extraction of accurate data
 - No need to extract from figure
 - Reduces ambiguity and error
- Go beyond the results section
 - Helps reduce bias from selective reporting
 - Capture the full picture of the study
- Extends the life the dataset
 - Can always be accessed

Gerstner et al. (2017) *Methods in Ecology and Evolution*

Learning and teaching

Long Term Ecological Research program (LTER) Datasets

- Teaching students using example datasets
 - Real biological "quirks"
 - Real scenarios
 - Can teach good practises from the start
- Learning and understanding new methods
 - Complexity can be broken down
 - Walkthrough when code also available

Benefits for the data archiver

- Increased exposure, reach, and trustworthiness
- Citation advantage (+25%) ¹
- Your own best collaborator
 - Data is clean and ready to use
 - Well annotated
 - Cannot be lost

Photo by Anton

Reducing research loss & waste

- Removes need for duplicated data collection effort
 - Time/location/event dependant data
 - Research animal use
- Reduces cost of research

Roche et al. (2015) PLOS Biology

How are things going?

Transparency and Openness Promotion (TOP) guidelines

- "A set of standards applied to journals to measure their alignment with open scientific principles"
 - Specific guidance on data transparency:
 - Level 3: open data + peer review of dataset and analysis
 - Level 2: open data in trusted repository
 - Level 1: mandatory data statement
- >5000 journals are signatories
- Field specific advice for ecology and evolution

Promoting an open research culture

Author guidelines for journals could help to promote transparency, openness, and reproducibility

By B. A. Nosek, * G. Alter, G. C. Banks,

D. Borsboom, S. D. Bowman,

S. J. Breckler, S. Buck, C. D. Chambers,

G. Chin, G. Christensen, M. Contestabile,

A. Dafoe, E. Eich, J. Freese,

R. Glennerster, D. Goroff, D. P. Green, B. Hesse, M. Humphreys, J. Ishiyama,

D. Karlan, A. Kraut, A. Lupia, P. Mabry,

T. Madon, N. Malhotra,

E. Mayo-Wilson, M. McNutt, E. Miguel,

E. Levy Paluck, U. Simonsohn,

C. Soderberg, B. A. Spellman,

J. Turitto, G. VandenBos, S. Vazire,

E. J. Wagenmakers, R. Wilson, T. Yarkoni

Nosek et al. 2015

Top down pressure

- Journals
 - Mandated archiving has become "the norm"
- Funding sources
 - Open access requirements extending to datasets
- Institutions
 - To help staff meet requirements of the above

Community driven approaches

- Positive attitudes towards data transparency are common
 - 95% of scientists in ecology and evolution think that data should be publically archived (Whitlock et al. 2010)
- Lack of data transparency is seen as a problem
 - 67% of scientists think that lack of access to data is a major impediemnt to progress in science (Tenopir et al. 2011)

How well are we doing?

	Others can access my data easily			
	Agree strongly	Agree somewhat		
social sciences	11(5.4%)	36(17.8%)		
computer science/engineering	12(10.3%)	29(24.8%)		
physical sciences	17(11.3%)	41(27.3%)		
environmental sciences & ecology	56(12.0%)	124(26.5%)		
atmospheric science	12(23.5%)	13(25.5%)		
biology	28(15.6%)	50(27.9%)		
medicine	2(6.5%)	2(6.5%)		
other	12(13.0%)	21(22.8%)		
$\chi^2 = 73.265$, $p = .000$. doi:10.1371/journal.pone.0021101.t016				

How well are we doing?

Published without sufficient data to replicate:

- 89% (N=18) of micro-array gene expression analyses (Ioannidis et al. 2009)
- 35% (N=19) of population genetic studies (Gilbert et al. 2012)
- 64% (N=100) of non-molecular eco/evo studies in journals that **mandate data archiving** (Roche et al. 2015)

Photo by Steven Wright

How do we improve things?

- Why we don't share data?
 - Knowledge barriers
 - Re-use concerns
 - Disincentives
- How to work towards data transparency

Why don't we share data and code? Perceived barriers and benefits to public archiving practices

Dylan G. E. Gomes^{1,2}, Patrice Pottier^{3,†}, Robert Crystal-Ornelas^{4,†}, Emma J. Hudgins⁵, Vivienne Foroughirad⁶, Luna L. Sánchez-Reyes⁷, Rachel Turba⁸, Paula Andrea Martinez⁹, David Moreau¹⁰, Michael G. Bertram¹¹, Cooper A. Smout¹² and Kaitlyn M. Gaynor^{13,14}

¹NRC Research Associate, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA

²Cooperative Institute for Marine Resources Studies, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, USA

³Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales. Sydney. New South Wales 2052, Australia

⁴Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

⁵Department of Biology, Carleton University, Ottawa, Canada, K1S 5B6

⁶Department of Biology, Georgetown University, Washington, DC 20057, USA

⁷School of Natural Sciences, University of California, Merced, 95343 USA

⁸Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-7239, USA

⁹Australian Research Data Commons, The University of Queensland, Brisbane 4072, Australia

¹⁰School of Psychology and Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand

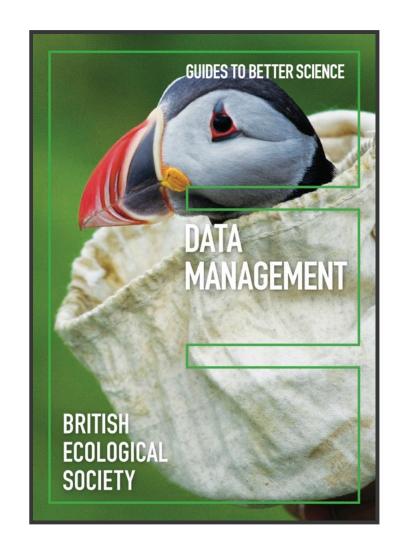
¹¹Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE-907 36, Sweden

¹²Institute for Globally Distributed Open Research and Education (IGDORE), Brisbane 4001, Australia

¹³Departments of Zoology and Botany, University of British Columbia, Vancouver, Canada, BC V6T 1Z4

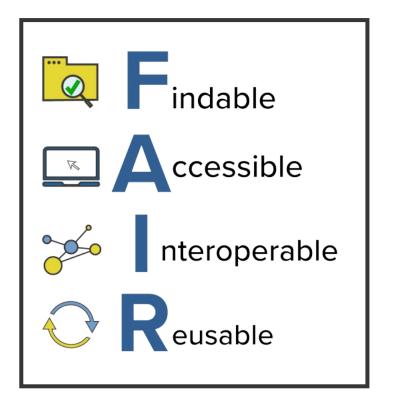
¹⁴National Center for Ecological Analysis and Synthesis, Santa Barbara, CA 93101, USA

Knowledge barriers

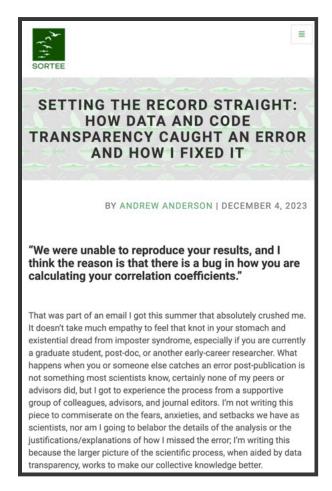

What's the process?

- Do not know how to share data effectively
 - Which online data repository to use?
 - What format to share data in?

What's the process?


- Online guides and primers
 - British Ecological Society "Guides to Better Science"
 - UKRN Primers
 - SORTEE (coming soon)

British Ecological Society Primer Series


What's the process?

- Institutional libraries
 - Often under-utilised advice and guidance
- FAIR templates and guides
- Any data is better than no data!
 - Learn by doing

The FAIR Principles

Insecurities

- Early career researchers can feel especially vulnerable
- Fear, insecurity and embarressment are powerful emotions

Blog post by Andrew Anderson

Insecurities

"We were unable to reproduce your results, and I think the reason is that there is a bug in how you are calculating your correlation coefficients."

That was part of an email I got this summer that absolutely crushed me. It doesn't take much empathy to feel that knot in your stomach and existential dread from imposter syndrome, especially if you are currently a graduate student, post-doc, or another early-career researcher. What happens when you or someone else catches an error post-publication is not something most scientists know, certainly none of my peers or advisors did, but I got to experience the process from a supportive group of colleagues, advisors, and journal editors. I'm not writing this piece to commiserate on the fears, anxieties, and setbacks we have as scientists, nor am I going to belabor the details of the analysis or the justifications/explanations of how I missed the error; I'm writing this because the larger picture of the scientific process, when aided by data transparency, works to make our collective knowledge better.

- Share before publication
 - Lab meetings or data review sessions
 - Pre-print (private or open)
- Data being hard to understand is bigger issue
- Culture that prioritises learning over citisism

Blog post by Andrew Anderson

Don't see value in their data

- Too niche
- Too small
- Why would someone be interested?

Photo by Diego PH

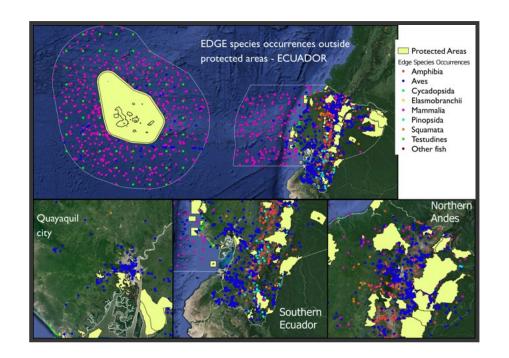
Don't see value in their data

- Highly subjective
- Hard to predict future use
- + all other benefits

Photo by Diego PH

Re-use concerns

Misinterpretation


- Fear of inappropriate use
 - Lack of familiarity with particular dataset
 - Miss crucial details and draw misleading conclusions

Misinterpretation

- High quality metadata
 - Peer review
- Contactable
- Not a unique problem to data

Sensitive information

- Dual use problem
- Weigh up benefits and costs
- Ethical (and legal) implications
- Sharing limited subset
 - Species example guidelines: Chapman 2020

GBIF

Disincentives

Scooping

Fear of:

- A researcher performs an analysis on publicly shared data that the original data collected had not done yet
 - Being "scooped"
- Reduced collaborations
- Loss of future publications
 - Metric used to assess performance

Photo by Saher Suthriwala

Scooping

Less likely than you would imagine:

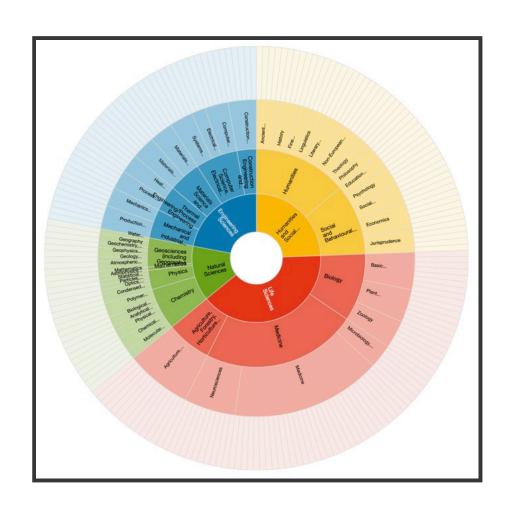
- Ideas are plentiful
- Original collectors in best position to act
- Most analyses by original authors on published data happen within 2 years¹
- Most analysis by other researchers peak at 5 years^1

Photo by Saher Suthriwala

Scooping

- Pre-print to "claim"
- If major concern:
 - restrictions on use of data can be made
 - embargo periods
- Change in mindset to see data as a valuable contribution

Photo by Saher Suthriwala


How to work towards data transparency

1. Plan to publish your data!

- What data needs to be recorded?
- What metadata might be needed?
- How raw/cleaned should my data be?
- Talk with collaborators early about plans

2. Identify an appropriate repository

- Field specific
- Data type specific
- Journal preferences
- Good starting place: re3data.org

Subjects covered by re3data.org

3. Make a nice README file

- One or more plain text files that describe the data in detail
- Write early!
- Check repository guidelines
- Document your data

4. Pre-peer-review peer-review

- Ask a colleague to look through your README and dataset
 - Data/code review sessions
 - Can they make sense of it?

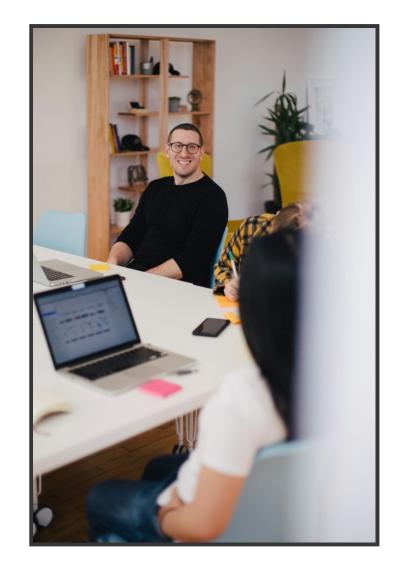


Photo by Jason Goodman

5. Publish your data

- Make sure it has a citable DOI
- Cite your data in your publication!
- Talk about it with your colleagues

Thank you for listening

- Slides & references:
 - irmoodie.com/slides/datatransparency-stockholm-2024
- Want to learn more:
 - www.sortee.org
- Contact me:
 - iain.moodie@biol.lu.se or irmoodie.com
- Questions?